
1.  Introduction
Most ensemble-based data assimilation systems for global weather prediction use a blend of a time-invariant (also 
called static or climatological) background error covariance estimate with a dynamic localized ensemble-based 
estimate. The static estimate generally compensates for deficiencies in the ensemble-based estimate. For exam-
ple, the static estimate is typically of higher rank than the ensemble-based estimate, and thus can counter the 
tendency for filter divergence when the ensemble size is insufficient to represent the subspace of unstable modes 
that correspond to the positive and neutral Lyapunov exponents of the cycling data assimilation system (Bocquet 
& Carrassi, 2017; Penny, 2017). This blending can be implemented by linearly combining the background-error 
covariance estimates before computing the Kalman Gain (the hybrid-covariance approach, first proposed by 
Hamill and Snyder (2000)) or by combining the static and ensemble-based Kalman gain estimates (the hybrid-gain 
approach, first proposed by Penny (2014)). In many current operational systems, the hybrid-covariance approach 
is applied by computing the update using a hybrid four-dimension ensemble variational solver (4DEnVar; see 
e.g., Buehner et al. (2010)). The ensemble perturbations are typically updated with an ensemble Kalman filter 
(EnKF) that does not utilize a static background error covariance estimate. The current operational NOAA Global 
Data Assimilation System (GDAS) uses such an approach (Kleist & Ide, 2015), in which the ensemble mean 
update produced by the EnKF is replaced by the hybrid 4DEnVar solution, and all of the ensemble members 
are then recentered around the hybrid-covariance updated ensemble mean analysis. In this study, we compare 
the hybrid-covariance approach with a hybrid-gain approach that implicitly blends the Kalman gain matrices 
produced by the EnKF and 3DVar by recentering the ensemble perturbations around a blended ensemble mean 
analysis. There are two primary motivations for investigating the hybrid-gain approach in the NOAA system. 
First, since the hybrid-gain approach uses 3DVar instead of the more expensive hybrid 4DEnVar solver, it runs 
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faster. Second, since the EnKF solution is still used in the ensemble mean update (unlike the hybrid-covariance 
approach where it is completely replaced by the hybrid 4DEnVar solution), it is more useful for testing improve-
ments to the EnKF solver.

2.  Experimental Design
The current operational hybrid 4DEnVar configuration in the GDAS uses 80 ensemble members of the Global 
Forecast System (GFS) model and a single higher-resolution deterministic forecast run at twice the horizontal 
resolution. A hybrid 4DEnVar algorithm is used to update the deterministic forecast, using the lower-resolution 
ensemble perturbations, and an EnKF algorithm (the gain-form of the local ensemble transform Kalman filter 
(LGETKF) with model-space vertical localization as described in Lei et al. (2018)) is used to update the ensem-
ble members. The analysis ensemble is fully recentered around the up-scaled hybrid 4DEnVar analysis before 
being propagated forward to the next analysis time by the forecast model. This process is illustrated schematically 
in Figure 1. We note that it is not necessary to fully recenter the EnKF analysis ensemble around the hybrid 
4DEnVar analysis—Houtekamer et al. (2019) found that a “partial recentering” approach in which only half the 
EnKF members were recentered performed better in the Canadian operational system.

In this study, we use a lower-resolution ensemble (∼50 km horizontal resolution and 64 vertical levels instead 
of the ∼25 km and 127 vertical level resolution used in operations), and there is no high-resolution determinis-
tic forecast. Instead, the hybrid 4DEnVar solver uses the ensemble mean background to compute an analysis at 
the same resolution as the ensemble, and the LGETKF analyzed ensemble members are recentered around this 
analysis (Figure 2). Another difference with the operational setup is that the four-dimensional incremental anal-
ysis update (Lei & Whitaker, 2016) implemented in NOAA operations for GFS version 16 is not used. For the 
hybrid-gain configuration of the GDAS, we replace the hybrid 4DEnVar step in Figure 2 with a 3DVar solution. A 
weighted average of the 3DVar analysis increment and the LGETKF analysis increment is computed and added to 
the ensemble mean background, and the analysis ensemble is recentered around this new analysis (Figure 3). This 
is equivalent to blending the 3DVar and LGETKF Kalman Gains, as described in Appendix B of Penny (2014). A 
similar approach was used to blend 4DVar and LETKF gains by Bonavita et al. (2015). Note that in this approach 
the part of the ensemble mean analysis increment computed by the LGETKF is retained in the cycled system, 
unlike in the hybrid-covariance approach where it is completely replaced by the variational analysis.

A key parameter in the hybrid-covariance (hybrid-gain) algorithms is the relative weight given to the static and 
ensemble-based part of the covariance (gain). Currently in NOAA operations, the static covariance estimate is 
given a weight of 0.125 and the ensemble-based part of the covariance is given a weight of 0.875 in the hybrid 
4DEnVar solution. The weights sum to one—but this is not a requirement. Because of the smoothing inherent in 

Figure 1.  Operational configuration of the NOAA Global Data Assimilation System data assimilation update. For the 
“deterministic” analysis part hybrid four-dimension ensemble variational solver (4DEnVar) is run using high-resolution 
background and lower-resolution ensemble perturbations. Ensemble members are updated using the local ensemble transform 
Kalman filter and recentered around the upscaled high-resolution EnVar analysis before being propagated with ensemble 
forecast system to produce backgrounds for the next data assimilation window.

https://www.weather.gov/media/notification/pns20-44gfs_v16.pdf
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the estimation of the static covariance, the static part of the increment is primarily representative of larger-scale 
errors, and the ensemble part of the increment dominates at the smallest scales. This has motivated us to fix the 
weight given to the ensemble part of covariance (increment) in the hybrid-covariance (hybrid-gain) experiments 
in this study to 1.0, so as not to reduce the amplitude total increment at small scales. This does not degrade the 
performance of either the hybrid-covariance or hybrid-gain algorithms as compared to requiring that the weights 
sum to 1.0 (not shown), and we note that the UK Met Office also uses a nonaffine weighting scheme (Bowler 
et al., 2017). Using the full ensemble-based increment is also consistent with the interpretation of the role of the 
static part of the update as a “stabilizer” to prevent filter divergence due to insufficient ensemble size, by prevent-
ing the larger scales from drifting away from the true state in the cycling system.

All of the observations that are assimilated operationally at NOAA are also assimilated in the experiments 
described here, including all-sky microwave AMSU-A and ATMS radiances (Zhu et al., 2019). Cross-channel 
error correlations for IASI and CRIS infrared sounders are also accounted for using the method described by 
Bathmann and Collard (2021). The method applies a linear transformation to a space in which the observation 
errors are uncorrelated, so no changes to the LGETKF algorithm (which assumes a diagonal observation error 
covariance and uses model-space vertical localization) are needed. In contrast, traditional observation-space 

Figure 2.  Data assimilation configuration used for the hybrid-covariance experiments in this study. Note the differences 
between operational setup (Figure 1) and this setup. The hybrid four-dimension ensemble variational solver system is run 
at the same spatial resolution as the ensemble system, using the ensemble mean background. There is no higher-resolution 
deterministic forecast.

Figure 3.  Data assimilation configuration used for the hybrid-gain experiments in this study. The hybrid-gain setup differs 
from the hybrid-covariance setup in the recentering step, which also blends the ensemble Kalman filter (EnKF) ensemble 
mean and 3DVar increments to create a new ensemble mean analysis.
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vertical localization schemes such as those typically used in the LETKF are problematic since they require obser-
vations be assigned a vertical location, which is not well defined in the transformed space in which the observa-
tion errors are uncorrelated. Horizontal and vertical localization length scales (the scale at which the localization 
function goes to zero) are 1,250 km and 14 vertical levels, respectively, for both the LGETKF and 4DEnVar. In 
the LGETKF algorithm, vertical localization is applied in model space using the modulated ensemble approach 
described by Lei et al. (2018). As was shown by Lei et al. (2018), this is crucial for obtaining a solution with the 
LGETKF that matches the 4DEnVar solution when radiances are assimilated. To represent 98% of the variance 
of the vertical localization matrix, 13 eigenvectors are required, so the total (modulated) ensemble size used in 
the LETKF is 1,030 for each local volume. Since the number of ensemble members in each local volume implies 
a limit on the amount of observational information that can be effectively utilized, we cap the number of obser-
vations assimilated in each local volume to 10,000 (roughly 10 times the effective ensemble size) and select the 
subset that is closest (in horizontal distance) to the analysis grid point. Experimentation has shown that including 
more observations in each local volume does not improve (and in some cases degrades) the result. We also use 
the linearized observation operator in the LGETKF to calculate ensemble perturbations in observation space 
(Shlyaeva & Whitaker, 2018), so that the full nonlinear observation operator needs only to be computed for the 
ensemble mean background. This makes the forward observation operator calculation for the ensemble much 
more efficient, otherwise the full nonlinear observation operator would have to be computed for each of the 1,030 
modulated ensemble members. To represent the model uncertainty component of the ensemble-based covariance 
estimate, we use relaxation-to-prior spread inflation (Whitaker & Hamill, 2012) with a coefficient of 0.85 and 
stochastic physics enabled in the forecast model. The stochastic parameterizations (stochastic kinetic energy 
backscatter, stochastically perturbed physics tendencies, and stochastically perturbed boundary layer humidity) 
in the GFS are configured as in NOAA operations (Pegion et al., 2016).

Figure 4.  Hybrid-covariance and hybrid-gain innovation statistics for in situ vector wind and temperature observations. Only 
the two best performing experiments (α = 0.125 for hybrid-covariance and = 0.25 for hybrid-gain) are shown. Vertical levels 
where the differences are deemed statistically significant at the 99% level are shaded yellow. Significance is evaluated using a 
Student's t-test with inflation to account for temporal autocorrelations (Geer, 2016, Appendix A).
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Figure 5.  Zonal mean root-mean-squared (RMS) 24-hr ensemble-mean forecast error difference (vector wind and 
temperature) for the best performing hybrid-covariance (=0.125) and hybrid-gain (=0.25) experiments. Errors are computed 
relative to operational ECMWF analyses. Shaded areas indicate statistical significance at the 95% level including the effects 
of serial correlation. The global mean RMS error difference between the surface and the 150 hPa level is shown in the title of 
each plot. Negative values indicate the hybrid-covariance experiment performs better. Negative contours are dotted, positive 
contours are thin solid, and the zero contour is thicker solid.
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3.  Comparison Between the Hybrid-Covariance and 
Hybrid-Gain Systems
Experiments were initialized with the upscaled operational EnKF ensem-
ble from 2020-08-20:06, and run until 2020-09-25:00. Twice per day at 00 
and 12 UTC the background forecast for the first 20 ensemble members was 
extended out to 24 hr. The performance metrics used here are the root-mean-
squared (RMS) fit of the first guess to the in situ wind and temperature 
observations, and the RMS difference between the ensemble mean 24-hr 
forecast and the operational ECMWF analyses. Statistics were computed for 
the period 2020-08-25:00–2020-09-25:00. Experiments were conducted for 
four different static B weighting coefficients (hereafter denoted as α)—0, 
0.125, 0.25, and 0.5. In Figures 4 and 5, comparisons of the innovation statis-
tics and 24-hr forecast errors for the best performing hybrid-gain (α = 0.25) 
and hybrid-covariance (α = 0.125) experiments are shown. The fact that the 
minimum error is achieved with a different value of α in the two systems is 

not surprising, since the weight is applied to the Kalman gain in the hybrid-gain system, and Kalman gain is not a 
linear function of the background-error covariance. Table 1 shows the global mean temperature and vector wind 
RMS errors relative to ECMWF analyses for all of the experiments. For α = 0, the hybrid-covariance experiment 
reduces to pure  4DEnVar, and the hybrid-gain experiment reduces to pure LGETKF. In the hybrid-gain α = 0 
case, the 3DVar solution is only used to update the bias-correction coefficients for radiance and aircraft temper-
ature observations.

The best-performing hybrid-covariance experiment (α = 0.125) outperforms the best-performing hybrid-gain 
experiment (α = 0.25) especially for vector wind in the extra-tropics. However, the hybrid-covariance experiment 

Static B weight
Hybrid-cov with 

TLNMC
Hybrid-cov without 

TLNMC Hybrid-gain

α = 0.0 3.070/0.883 3.117/0.892 3.133/0.901

α = 0.125 3.015/0.870 3.0578/0.876 3.072/0.889

α = 0.25 3.035/0.875 3.071/0.880 3.058/0.886

α = 0.5 3.080/0.884 3.102/0.888 3.096/0.894

Note. For α = 0.0, the hybrid-covariance experiment is pure ensemble-four-
dimension ensemble variational solver, and for the hybrid-gain it is pure gain-
form local ensemble transform Kalman filter.

Table 1 
Global-Mean Root-Mean-Squared 24-hr Ensemble-Mean Forecast Errors 
(Vector Wind in m/s Temperature in K) Between the Surface and 150 hPa, 
Relative to ECMWF Analyses for All of the Experiments

Figure 6.  As in Figure 4, but without the tangent-linear normal mode constraint applied to the ensemble-based component of 
the increment in the hybrid-covariance experiment.
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Figure 7.  As in Figure 5, but without the tangent-linear normal mode constraint applied to the ensemble-based component of 
the increment in the hybrid-covariance experiment.

includes a tangent-linear normal mode incremental balance constraint (TLNMC; Kleist et  al.,  2009) on the 
ensemble-based part of the analysis increment while the hybrid-gain experiment only includes the TLNMC on 
the static B part of the increment. Figures 4, 5, 6 and 7 compare the hybrid-gain solution with a hybrid-covariance 
solution that only includes the TLNMC on the static B part of the increment. Without the TLNMC applied to the 
ensemble part of the variational increment in the hybrid-covariance solution, the differences are reduced consider-
ably, and are not statistically significant over much of the domain, especially for vector-wind. We argue that these 
differences are small enough that they could be explained by differences in the way localization is performed in 
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the variational and LGETKF systems, rather than the way the static component of the background-error covari-
ance is treated. This is illustrated by Figure 8, which shows the difference in 24-hr ensemble-mean forecast errors 
for the α = 0.0 case, which isolates the impact of the solver used to compute the ensemble-based part of the 
ensemble-mean analysis increment (4DEnVar vs. LGETKF). The differences shown in Figure 8, although small, 
are slightly larger than those shown in Figure 7. Since the primary difference between the LGETKF and 4DEnVar 
solvers is the way horizontal localization is handled (B-localization for 4DEnVar as opposed to R-localization 

Figure 8.  As in Figure 7, but for α = 0.0, to isolate the impact of the method used to compute the ensemble-based part of 
the ensemble mean analysis increment (four-dimension ensemble variational solver vs. gain form local ensemble transform 
Kalman filter).
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in the LGETKF, see e.g., Sakov and Bertino  (2011)), this supports the conjecture that the differences in the 
way localization is treated is at least, if not more, important than the way the static covariances are handled in 
the hybrid-covariance and hybrid-gain algorithms. We note that Nerger et  al.  (2012) examined the impact of 
the localization method in ensemble-based solvers, and found that although the two methods produced similar 
results, the optimal length scale for R-localization is shorter than for B-localization.

4.  Conclusions
Experiments using a low-resolution version of the NOAA operational GDAS show that a hybrid-gain approach 
performs similarly to a hybrid-covariance approach, if the tangent-linear incremental balance constraint applied 
to the ensemble-part of the increment is turned off. The TLNMC allows the hybrid-covariance algorithm to 
outperform the hybrid-gain algorithm, which does not apply a balance constraint to the ensemble-based part 
of the increment. This suggests that the hybrid-gain approach could be a viable and computationally efficient 
alternative to the current operational hybrid-covariance approach, if an incremental balancing procedure were 
developed for the EnKF update.

The TLNMC algorithm works by performing a minimization in the space of the “slow” normal modes of the 
primitive equations linearized about a state of rest. In this context, “slow” means the geostrophically balanced 
part of the spectrum, excluding the fast-propagating gravity waves. The 4DIAU algorithm used in the NOAA 
operational GDAS also acts to reduce the amplitude of fast motions since it acts as a frequency-selective digital 
filter (see Section 2 of Lei and Whitaker (2016)). In the experiments described here, we elected not to use 4DIAU 
to save computation time. This leaves open the possibility that application of the 4DIAU would reduce the gravity 
wave noise introduced by the ensemble-based part of the analysis increments, thereby reducing the impact of the 
TLNMC. To test this, we have performed additional EnVar and LGETKF experiments with α = 0.0 and 4DIAU 
(not shown), and found that the apparent benefit of the TLNMC in the EnVar solution remains quite similar to that 
show in Figure 8. This suggests that the TLNMC is more effective at filtering out the deleterious gravity-wave 
oscillations introduced by the ensemble part of the analysis increment (caused by localization). Further study is 
needed to understand why this is the case, and how best to introduce a similar capability in the LGETKF solver.

Data Availability Statement
The operational NOAA GSI data assimilation system (including the variational and EnKF solvers) is publicly 
available at https://github.com/NOAA-EMC/GSI. The NOAA Unified Forecast System that forms the basis of 
the NOAA operational GFS is publicly available at https://github.com/ufs-community/ufs-weather-model. The 
observational data sets used for assimilation experiments described here (excluding some commercial platforms 
that cannot be redistributed) are available at https://www.ncei.noaa.gov/products/weather-climate-models/glob-
al-data-assimilation. The python scripts and netCDF data needed to generate Figures 4–8 are available at https://
doi.org/10.5281/zenodo.6506468 (Whitaker, 2022).
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